Цифровая система передачи ЦСП-30

Блок КМ-08/-09/-10

Руководство по эксплуатации

СМ3.090.034 РЭ

Часть III (ред. 2 / ноябрь 2011 г.)

Плата КМ-08/-09/-10 Плата КМ-080/-090/-100

Руководство по эксплуатации

СМ5.232.021 РЭ

(ред. 4 / ноябрь 2011)

Сетевой мониторинг

Руководство оператора СМ40.003-1.00 РО Часть III

(ред. 2 / ноябрь 2011 г.)

ЗАО НТЦ "СИМОС"

г. Пермь

СОДЕРЖАНИЕ

Руководство по эксплуатации

1.	B	ведение	3
2.	Ha	азначение	3
3.	Кс	онструкция блоков КМ	4
4.	Кс	онструкция плат КМ	6
4	l.1	Кассетный вариант (плата в кассете М30АЕ)	6
4	.2.	Блочный вариант (плата в блоке МЛТ-30/60-1U)	7
5.	Те	ехнические данные	9
6.	П	орядок подключения	11
6	6.1.	Подключение внешних цепей	12
7.	И	спользование по назначению	12

Руководство оператора

1.	Be	ведение	13
2.	На	значение	13
3.	Ис	пользование по назначению	13
	3.1.	Выбор режима работы	13
	3.2.	Установка сетевых параметров оборудования	14
	3.3.	Интерфейс модуля	14
	3.4.	Конфигурирование	16
	3.5.	Конференц связь (для КМ в режиме 4E1)	17
	3.6.	Ethernet (для КМ-09/-10)	17
	3.7.	Кодирование КИ (для КМ в режиме 2 Е1, 2 ИКМ-15)	18
	3.8.	Отключение потока (шлейф)	18
	3.9.	Контроль CRC	18
	3.10.	Линейный код	18
	3.11.	Настройка потоков ИКМ-15 (для КМ в режиме 2 Е1, 2 ИКМ-15)	19
	3.12.	Синхронизация	19
	3.13.	Применение конфигурации	19
	3.14.	Контроль ошибок	20

Руководство по эксплуатации

1. Введение

Данное руководство по эксплуатации предназначено для изучения функциональных возможностей, параметров и правил эксплуатации блоков КМ-08/-09/-10 СМЗ.090.034-08/-09/-10, плат КМ-08/-09/-10/-080/-090/-100 СМ5.232.021-01/-02/-03/-04/-05 (далее КМ – кроссировочный мультиплексор) цифровой системы передачи ЦСП–30. При изучении мультиплексора дополнительно следует пользоваться техническим описанием на блок первичного мультиплексирования МЗ0АЕ СМЗ.090.006.

2. Назначение

КМ может работать в двух режимах:

- Режим кроссоединения каналов со скоростью 64 кбит/с в пределах 4-х потоков Е1 и 2-х каналов передачи данных.
- Режим кроссоединения каналов со скоростью 64 кбит/с в пределах 2-х потоков E1, двух потоков ИКМ-15 и 2-х каналов передачи данных.

Функции КМ:

- приём и формирование потока E1 с интерфейсом по G.703 и структурой согласно рекомендациям G.704 и G.706, включая процедуру CRC4;
- приём и формирование двух потоков ИКМ-15;
- приём и формирование цифровых каналов передачи данных с интерфейсом 100Base-TX (с поддержкой VLAN);
- программная конфигурация каналов через асинхронный управляющий порт типа RS-232C;
- удаленный телеконтроль и конфигурирование по потокам E1.
- диагностика потоков Е1 по параметрам:
 - ES секунда с ошибками;
 - SES секунда, пораженная ошибками;
 - ESR коэффициент ошибок по секундам с ошибками;
 - US период неготовности;
 - аварии: потеря сигнала (LOS);
 - потеря цикла (LOF);
 - потеря сверхцикла;
 - авария цикла дальнего конца;
 - авария сверхцикла дальнего конца;
 - ошибка CRC;
 - ошибка CRC дальнего конца.

3. Конструкция блоков КМ

Блок КМ имеет следующие исполнения:

- блок КМ-08 СМ3.090.034-08 без цифровых каналов;
- блок КМ-09 СМ3.090.034-09 один интерфейс 100Base-TX;
- блок КМ-10 СМ3.090.034-10 два интерфейса 100Base-TX.

Блок устанавливается на любую горизонтальную поверхность. На следующем рисунке приведены передняя и задняя панели блока.

Рис. 1. Лицевая (вверху) и задняя (внизу) панели блоков КМ-08/-09/-10

Обозначения:

- 1. Индикатор питания PWR отображает наличие питания на блоке КМ и начальное самотестирование;
- 2. Индикаторы аварий потоков Е1 отображают состояния:
 - потеря входного сигнала;
 - авария цикловой синхронизации;
 - авария сверхцикловой синхронизации;
 - извещение об аварии цикловой синхронизации дальнего конца;
 - извещение об аварии сверхцикловой синхронизации дальнего конца;
 - нарушение чередования полярности (кодовые ошибки);
 - ошибки и извещения CRC4 (при установке контроля CRC4).

Индикаторы аварий потоков ИКМ-15 отображают состояние аварии цикловой синхронизации;

- 3. Соединители и индикаторы работы цифрового порта 1 передачи данных. Индикатор отображает наличие связи (для блоков КМ-09/-10);
- 4. Соединители и индикаторы работы цифрового порта 2 передачи данных. Индикатор отображает наличие связи (для блока КМ-10);
- 5. Соединитель RS-232 для подключения компьютера по соответствующему стыку;
- 6. Гнездо подключения сетевого адаптера;
- 7. Разъем подключения станционной батареи;
- 8. Выключатель питания;
- 9. Розетки подключения потоков Е1;
- 10. Клемма заземления;
- 11. Винты крепления крышки блока.

4. Конструкция плат КМ

4.1 Кассетный вариант (плата в кассете M30AE)

В кассетном варианте плата КМ имеет следующие исполнения:

- плата КМ-08 СМ5.232.021 без цифровых каналов;
- плата КМ-09 СМ5.232.021-01 один интерфейс 100Base-TX;
- плата КМ-10 СМ5.232.021-02 два интерфейса 100Вазе-ТХ.

Плата КМ устанавливается на любое с 1 по 15 место в кассету M30AE для установки в стойки 19" высотой 3U (см. Рис. 2).

При установке платы КМ на 14 или 15 место, плата становится доступной для сетевого мониторинга и конфигурирования через плату ИП-03 (ИП-04) и рассматривается как часть кассеты. При установке на места с 1-го по 13-ый конфигурация платы КМ производится через соединитель RS-232, расположенный на лицевой планке платы. В этом случае плата рассматривается как самостоятельное устройство, не входящее в состав кассеты.

Рис. 2. Расположение плат КМ в кассете М30АЕ.

Обозначения:

- 1. Индикатор питания PWR отображает наличие питания на плате КМ и начальное самотестирование.
- 2. Индикаторы аварий потоков Е1 отображают состояния:
 - потеря входного сигнала;
 - авария цикловой синхронизации;
 - авария сверхцикловой синхронизации;
 - извещение об аварии цикловой синхронизации дальнего конца;
 - извещение об аварии сверхцикловой синхронизации дальнего конца;
 - нарушение чередования полярности (кодовые ошибки);
 - ошибки и извещения CRC4 (при установке контроля CRC4).

Индикаторы аварий потоков ИКМ-15 отображают состояние аварии цикловой синхронизации;

- 3. Соединители и индикаторы работы цифрового порта 1 передачи данных. Индикатор отображает наличие связи;
- 4. Соединители и индикаторы работы цифрового порта 2 передачи данных. Индикатор отображает наличие связи;
- 5. Соединитель RS-232 для подключения компьютера по соответствующему стыку
- 4.2. Блочный вариант (плата в блоке МЛТ-30/60-1U)

Платы КМ, предназначенные для установки в блок МЛТ-30/60-1U имеют следующие исполнения:

- плата КМ-080 СМ5.232.021-03 без цифровых каналов;
- плата КМ-090 СМ5.232.021-04 один интерфейс 100Base-TX;
- плата КМ-100 СМ5.232.021-05 два интерфейса 100 Base-TX.

Платы КМ устанавливается на дополнительное место в блок МЛТ-30/60-1U.

5. Технические данные

Интерфейс Е1:

• колич	нество стыков	4 / 2
• линеі	йный код	HDB3, AMI
• допу	стимое затухание на частоте 1024 кГц	12 дБ
• COOTE	етствие стандартам	ITU G.703, G.704, G.706, G.823
• контр	ооль по избыточности	CRC4
• разъе	PM	RJ-45 (8 конт.)
• такто	вая синхронизация передатчиков Е1:	
-	от принимаемого сигнала Е1	
-	от внешнего источника с частотой 20-	48 кГц
-	от внутреннего генератора.	
-	от одного из потоков ИКМ-15	
Парамет	ры приемника внешнего тактового сигн	ала:
_	входное сопротивление	120 Ом;
_	допустимая амплитуда импульсов	0,215,0 B.
Парамет	ры передатчика тактового сигнала:	
_	нагрузка	120 Ом;
-	размах напряжения выходных импул	ьсов 3,03,6 В.

Примечание: параметры приемника и передатчика тактовой синхронизации соответствуют параметрам интерфейса RS-485.

Интерфейс ИКМ-15:

•	количество стыков	0 / 2
•	линейный код	OMC, HDB3, AMI
•	допустимое затухание на частоте 1024 кГц	12 дБ

- разъем RJ-45 (8 конт.)
- тактовая синхронизация:
 - от принимаемого сигнала E1
 - от внешнего источника с частотой 2048 кГц
 - от внутреннего генератора.
 - от одного из потоков ИКМ-15

Цифровой интерфейс (для КМ-09/-090/-10/-100):

•	количество стыков	1 – KM-09/-090
		2 – KM-10/-100
•	режим работы	синхронный
•	скорость передачи	n*64 кбит/с, где n = 131
•	тип интерфейса	100Base-TX
•	разъем	RJ-45 (8 конт.)

Управление и конфигурирование:

- операционная система
- программа
- функции:
 - настройка параметров интерфейсов;
 - запись, чтение конфигурации устройства;
 - сохранение конфигурации в файл;
 - чтение конфигурации из файла;
 - вывод диагностики по стыку Е1 и ИКМ-15.

Питание:

- постоянное напряжение (36...72) В;
- переменное напряжение, через адаптер

(187.. 242) В, 50 Гц; не более 5 Вт.

• потребляемая мощность

Условия эксплуатации – температура окружающего воздуха от +5 до +40°С при относительной влажности воздуха до 90 %

Windows 2000/XP

Сетевой монитор версии 1.16 и выше

6. Порядок подключения

Через внешние лицевые соединители подключаются:

- интерфейсные цепи цифрового порта данных Ethernet (КМ-09/-090/-10/-100);

Таблица 1. Назначение контактов разъема RJ-45

Цепь	Контакт розетки RJ-45
TvD	1
TXD	2
PyD	3
KAD	6

– порт RS-232 для связи с компьютером.

Таблица 2. Назначение контактов разъема DB-9

Цепь	Контакт розетки RS-232
RxD	2
TxD	3
GND	5

Через внешние соединители задней панели подключаются следующие внешние цепи: — линейные цепи приема и передачи потоков Е1 и ИКМ-15;

Таблица 3. Назначение контактов разъема RJ-45 потоков E1 блока КМ и блока МЛТ-30/60-1U

Сигналы КМ	Контакт розетки RJ-45
Е1прм	1
	2
Elupy	4
ыпрд	5

Таблица 4. Назначение контактов разъема DB-25 на задней панели кассеты M30AE

Сигналы платы КМ	Контакт DB-25
1Е1прд	2
1Е1прд	15
1Е1прм	3
1Е1прм	16
2Е1прд / 1ИКМ15прд	5
2Е1прд / 1ИКМ15прд	18
2Е1прм / 1ИКМ15прм	6
2Е1прм / 1ИКМ15прм	19
ЗЕ1прд / 2ИКМ15прд	8
ЗЕ1прд / 2ИКМ15прд	21
ЗЕ1прм / 2ИКМ15прм	9
ЗЕ1прм / 2ИКМ15прм	22
4Е1прд / 2Е1прд	11
4Е1прд / 2Е1прд	24
4Е1прм / 2Е1прм	12
4Е1прм / 2Е1прм	25

6.1. Подключение внешних цепей

Внешние цепи подключаются на ответные части разъемов, входящие в комплект монтажных частей.

Цепь внешней сигнализации аварии соединена с проводом "Авария" кассеты M30AE или блока МЛТ-30/60-1U.

Нумерация контактов разъема RJ-45:

- кассетный вариант: контакт 1– нижний, контакт 8 верхний;
- блочный вариант: контакт 1– нижний, контакт 3 верхний
 блочный вариант: контакт 1– левый, контакт 8 правый.

Линейные цепи E1 можно выполнить двух или четырехпарными кабелями категории 5 типа UTP (неэкранированный), STP (экранированный), КССПВ или другой аналогичный с диаметром жил по изоляции 0,93...1,03 мм. На кабель монтируется (климпуется) специнструментом вилка типа TP8P8C (RJ-45).

7. Использование по назначению

Данный раздел описывает действия для *блока* КМ. При работе в *платами* КМ в кассетном или блочном вариантах произведите аналогичные действия.

1) Установите блок на любую твердую горизонтальную поверхность.

2) Не допускайте перекрытия вентиляционных отверстий на крышке блока и в его днище посторонними предметами!

- 3) Заземлите блок проводом с сечением не менее 4 мм²
- 4) Для получения доступа к переключателям установки режима отверните четыре верхних винта крепления крышки блока (поз. 11, Рис. 1) и снимите крышку.

Выполните необходимые действия:

- установите режим работы блока в соответствии с п. 3.1, на стр. 13;
- установите линейный код в соответствии с п. 3.10, на стр. 18.

Расположение переключателей на плате блока см. Рис. 5 на стр. 13.

Пример включения блока в режиме 2 Е1, 2 ИКМ-15 описан в п. 3.11 на стр. 19.

- 5) Установите крышку на место. Заверните четыре винта.
- 6) Убедитесь, что выключатель питания находится в положении «Выкл».
- 7) Присоедините к блоку сетевой адаптер или подайте питание от станционной батареи.
- 8) Подайте потоки E1 на соответствующие стыки. Подача/снятие потоков E1 допускается при работающем блоке.
- 9) Подайте питание на блок. Если питание будет осуществляться от сети переменного тока, сначала вставьте адаптер в розетку, затем переведите выключатель в положение «Вкл».
- 10) Конфигурацию и мониторинг блока выполняйте в соответствии с руководством оператора.

ВНИМАНИЕ! После выключения питания перед повторной подачей питания необходимо подождать 15 секунд, иначе источник питания КМ может не запуститься. Если это произошло (источник питания КМ не запустился), выключите питание и подождите 40 секунд.

Часть II. Сетевой мониторинг. Руководство оператора

1. Введение

Данное руководство оператора предназначено для изучения программного модуля сетевого мониторинга КМ.

Модуль сетевого мониторинга может использоваться как с настольным блоком КМ, так и с платой КМ, входящей в состав кассеты M30AE или блока МЛТ-30/60-1U, поэтому в программном модуле интерфейс настроен на работу с *платой* КМ.

Для использования данного документа необходим также документ "Сетевой монитор SIMOS_NM. Руководство оператора CM02.001-3.00 PO (ред.7 / ноябрь 2010)".

2. Назначение

Модуль сетевого мониторинга предназначен для выполнения:

- начального конфигурирования;
- просмотра или изменения конфигурации в процессе наладки и эксплуатации;
- непрерывного мониторинга состояния;
- вывод диагностики по стыку Е1 и ИКМ-15.

Модуль сетевого мониторинга КМ входит в состав сетевого монитора SIMOS_NM, начиная с версии 1.16.

3. Использование по назначению

ВНИМАНИЕ! Перед подключением к КМ установите переключатели S2 в положение OFF. В противном случае не удастся подключиться через порт RS-232, расположенный на лицевой планке.

3.1. Выбор режима работы

Установка режима производится переключателем S1.1 (см. Рис. 5):

- положение OFF соответствует режиму работы с 4-мя потоками E1;
- положение ON режиму с 2-мя потоками E1 и 2-мя потоками ИКМ-15.

Для изменения режима работы необходимо установить переключатель S1.1 в положение, соответствующее выбранному режиму, и произвести аппаратный сброс, т.е. снять и подать питание.

ВНИМАНИЕ! Если КМ уже наблюдался в программе Сетевой Монитор, то необходимо произвести сканирование сети заново

		$\begin{bmatrix} ON \\ 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} S3$ $\begin{bmatrix} ON \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} S5$	
$ \begin{array}{c} 1 \\ 2 \\ \hline \end{array} ON \\ S2 \end{array} $	ON 1 2 3 4 S1		

Рис. 5. Переключатели на КМ

3.2. Установка сетевых параметров оборудования

Перед началом работы с конфигурацией необходимо установить сетевые параметры КМ. Установка сетевых параметров (назначение сетевого адреса, текстовой метки) производится в соответствии с документом "Сетевой монитор SIMOS_NM. Руководство оператора" (см. п.4.4.2).

После настройки подключения, сканирования сети, установки сетевых адресов и меток блоков, построения маршрутных таблиц и сохранения сетевой конфигурации, основное окно сетевого монитора SIMOS_NM примет следующий вид:

Рис. 6. Основное окно сетевого мониторинга

Для конфигурирования необходимо установить указатель мыши в основном окне сетевого монитора на КМ, и вызвать двойным нажатием левой кнопки мыши окно модуля работы с КМ.

3.3. Интерфейс модуля

Внешний вид модуля показан на Рис. 7 и Рис. 8 на стр. 15.

В заголовке окна отображается название КМ, аппаратная версия, текстовая метка и режим работы.

Сразу под заголовком окна расположено основное меню.

Ниже меню, если КМ недоступен, выводится надпись на красном фоне:

Подключение к плате отсутствует

При наличии подключения надпись не выводится, поле остается пустым.

Окно модуля разделено на 4 части, которые схематично отображают канальные интервалы потоков Е1 или ИКМ-15. В каждой из частей отображается состояние канальных интервалов выходных потоков. Существует возможность выбора цветного или монохромного режима. Для этого необходимо воспользоваться соответствующим подпунктом пункта меню "Режим".

В цветном режиме каждому потоку соответствует треугольник со своим цветом. На Рис. 7 и Рис. 8 приведен цветной режим окна конфигурации.

В монохромном режиме вместо треугольников разного цвета используются разные геометрические фигуры, при этом:

- треугольник соответствует потоку 1Е1;
- квадрат потоку 2E1 или 1ИКМ-15, в режиме 4E1 и 2E1, 2ИКМ-15 соответственно;
- ромб потоку 3Е1 или 2ИКМ-15;
- круг потоку 4Е1 или 2Е1.

Цифра в фигуре обозначает канальный интервал, из которого берутся данные.

Рис. 7. Внешний вид модуля в режиме 4 потока Е1

Рис. 8. Внешний вид модуля в режиме 2 потока Е1, 2 потока ИКМ-15

3.4. Конфигурирование

После вызова окна происходит автоматическая загрузка текущей конфигурации из КМ.

Для того чтобы скоммутировать один КИ с другим, необходимо установить указатель мыши на КИ одного из потоков, нажать левую клавишу мыши, затем, удерживая клавишу, перетащить указатель мыши на другой КИ и отпустить клавишу. После отпускания клавиши канальные интервалы будут скомутированы. Все изменения сразу же отображаются в окне модуля. Если выбираемые КИ ранее были связаны с другими КИ, то предыдущие связи разорвутся автоматически.

Дополнительные режимы для КИ устанавливаются при помощи всплывающего меню. Для этого необходимо навести курсор мыши на требуемый КИ и кликнуть правой клавшей мыши. В появившемся меню можно выбрать следующие пункты:

- Завернуть;
- Конференц (для режима 4Е1);
- BCK (для КИ 16 потоков E1);
- Блокировка;
- Ethernet1;
- Ethernet2;

BCK

- Кодирование (для КИ потока ИКМ-15).

При выборе пункта для КИ установится следующий режим:

- заворот. В этом канальном интервале в качестве выходных данных используются входные данные того же канального интервала и того же потока, выходные биты сигнализации а, b равны входным битам a, b.

- конференц-канал. (см. п. 3.5);
- канал ВСК;

– блокировка. В этом канальном интервале в качестве выходных данных используется 0×55 , биты сигнализации $a,b = 0 \times 00$;

- Ethernet1 или
 - Ethernet2. Данный КИ участвует в передаче Ethernet потока (см. п. 3.6);
 - Кодирование (см. п. 3.7).

Соответствующий режиму рисунок будет отображаться в КИ, для которого выбран дополнительный режим.

3.5. Конференц-связь (для КМ в режиме 4Е1)

Для каждого потока можно назначить только один КИ для конференц-канала.

После выбора дополнительного режима "конференц-канал" для КИ или нажатии кнопки "Конференц-связь" в нижнем поле окна конфигурации появляется окно "Конференц-связь".

🗐 Конференц связь 🛛 🔀					
Источники					
	1E1	2E1	3E1		
	2	11	20		
1E1 2		V			
2E1 11	•		•		
3E1 20	•	V			
4E1					

Рис. 9. Окно Конференц-связь.

В окне "Конференц-связь" отображены источники (слева) и приемники (сверху) данных для каждого потока, которые участвуют в конференц-связи.

На рисунке приведен пример, когда поток 1Е1 во 2-ом канальном интервале принимает просуммированные данные КИ 11 потока 2Е1 и КИ 20 потока 3Е1.

3.6. Ethernet (для KM-09/-10)

КМ-09/-10 оборудован стыком 100Base_TX с автоопределением типа сопрягаемого стыка. При этом автоматически согласуются параметры передачи, и определяется тип кабеля. В большинстве случаев не требуется вмешательства в настройку сопрягаемого стыка. Однако, при сопряжении КМ-09/-10 со стыком Ethernet 1000Base_TX (со скоростью 1Гб/с) возможно отсутствие установления связи. В этом случае рекомендуется отказаться от опции «автоопределение» на сопрягаемом устройстве и установить режим «100 Мбит/с, полный дуплекс».

Подключения канального интервала к цифровому каналу Ethernet производится в соответствии с п. 3.4.

К Ethernet можно подключить любой канальный интервал.

При подключении КИ 16 потока E1 к Ethernet сигнальная информация для всего потока становится недоступной. Включение ВСК производится в соответствии с п. 3.4.

3.7. Кодирование КИ (для КМ в режиме 2 Е1, 2 ИКМ-15)

При коммутации КИ потока ИКМ-15 с Ethernet, каждый из таких КИ может быть закодирован ПСП-15 для улучшения характеристик выходного потока ИКМ-15 в коде ОМС. При этом происходит автоматическое раскодирование тех же КИ потоков ИКМ-15. При использовании кодирования данных данный режим должен быть включен с обеих сторон (на двух блоках, см. Рис. 10).

Включение кодирования отдельных КИ производится в соответствии с п. 3.4.

Включение кодирования всех данных Ethernet производится установкой флажка "Ethernet1" и/или "Ethernet2" в поле "Кодирование", расположенное в нижней части окна (см. Рис. 7).

Каналы ТЧ кодировать нельзя.

3.8. Отключение потока (шлейф)

Для отключения потока необходимо переключатель "Шлейф" перевести в положение "On", при этом выход потока будет подключен к его входу.

3.9. Контроль CRC

Для включения подсчета CRC потока E1 необходимо переключатель "CRC" перевести в положение "On".

Подсчет CRC в потоках ИКМ-15 не производится.

3.10. Линейный код

Для выбора линейного кода потока необходимо:

- 1) в программе переключатель "Код" установить в одно из трёх положений:
 - -HDB3;
 - -AMI;
 - -ОМС (для потоков ИКМ-15).
- 2) на КМ установить переключатели в положения (см. Рис. 5):
 - для КМ в режиме 4E1:
 - переключатели S3, S4 должны быть в положении ON, переключатели S5 в положении OFF;
 - -для КМ в режиме 2E1, 2ИКМ-15:
 - код HDB3, AMI переключатели S3 в положение ON для 1ИКМ-15 и S4 в положение ON для 2ИКМ-15
 - код ОМС переключатели S3 в положение ОFF для 1ИКМ-15 и S4 в положение OFF для 2ИКМ-15

При работе с кодом ОМС возможно уменьшить амплитуду выходного сигнала. Для этого переключатель S5.1 перевести в положение ON для потока 1ИКМ-15, переключатель S5.2 в положение ON для потока 2ИКМ-15. В остальных случаях переключатели S5 должны быть в положении OFF.

3.11. Настройка потоков ИКМ-15 (для КМ в режиме 2 Е1, 2 ИКМ-15)

При работе КМ с аппаратурой "Ива" у соответствующего канала ИКМ-15 должны быть убраны флажки «1к» и «6↔13». При работе с другим оборудованием флажки должны быть установлены.

** – поток со снятыми флажками «1к» и «6↔13»

3.12. Синхронизация

Выходные потоки могут быть синхронизированы одним из 6 источников тактового сигнала. Для выбора тактового сигнала необходимо установить переключатель в поле "Синхронизация", расположенное в нижней левой части окна (см. Рис. 7 и Рис. 8), в соответствующее положение.

3.13. Применение конфигурации

Для чтения конфигурации из устройства необходимо выбрать пункт меню "Опции → Загрузить с платы".

Для записи конфигурации в устройство необходимо выбрать пункт меню "Опции → Записать в плату".

Для сохранения конфигурации в файле выберите пункт меню "Файл → Сохранить...". Появится стандартный диалог операционной системы Windows, в котором необходимо указать имя файла для сохранения.

Для отображения ранее сохраненной конфигурации выберите пункт меню "Файл → Открыть". Появится стандартный диалог операционной системы Windows, в котором необходимо указать имя файла с сохраненной конфигурацией.

3.14. Контроль ошибок

При выборе пункта меню "Ошибки" появится окно контроля ошибок (см. ниже).

Подсчет ошибок ведется постоянно. Для обнуления статистики необходимо нажать кнопку "Сброс". При отсутствие ошибок в течение 1 секунды индикатор ошибок имеет зеленый цвет. При возникновении хотя бы одной ошибки в течение 1 секунды индикатор ошибок загорается красным цветом.

🛞 Оши	бки, плата КМ-	10 [Метка]	,адрес:	[1.1.3.3]
1E1	1ИКМ-15 2И	1KM-15	2E1	
0 838 838 9.9E-9	0 838 838 9.9E-9	0 838 838 9.9E-9	0 838 838 9.9E-9	ES SES US ESR
	•	•		LOS-потеря сигнала LOF-потеря цикла потеря сверхцикла авария цикла дальнего конца авария св. цикла дальн. конца ошибка CRC/цикл. синх. ошибка CRC/цикл. синх. дальнего конца проскальзывание
	Сброс	Од 0:13:58	}	Время наблюдения
Идет приє	м ошибок			

Рис. 11. Вид окна с ошибками для режима 2Е1, 2ИКМ-15

ЗАО НТЦ "СИМОС" Контактная информация:

Россия, г. Пермь 614	1990	тел.	(342) 290–93–10	Web: <u>htt</u>	o://www.simos.ru
ул. Героев Хасана	41	тел/фа	акс(342) 290–93–77	E-mail:	simos@simos.ru